• home
  • articles
  • authors
  • Reviewers
  • About the Journal
  • About the Journal
  • About the Journal
  • About the Journal
  • e-Submission

Indexed/Covered by

J Vet Sci 2018; 19(1): 51-57  https://doi.org/10.4142/jvs.2018.19.1.51
Tannic acid-mediated immune activation attenuates Brucella abortus infection in mice
Alisha W. B. Reyes1,2, Huynh T. Hop1, Lauren T. Arayan1, Tran X. N. Huy1, Wongi Min1, Hu Jang Lee1, Hong Hee Chang3, Suk Kim1,3,*
1Institute of Animal Medicine, College of Veterinary Medicine, and 3Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
2Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
Correspondence to: Suk Kim
Tel: +82-55-772-2359; Fax: +82-55-772-2349; E-mail: kimsuk@gnu.ac.kr
Received: January 9, 2017; Revised: March 17, 2017; Accepted: May 5, 2017; Published online: January 31, 2018.
Brucellosis is an emerging infectious disease affecting humans and animals. In this study, we investigated the in vitro and in vivo effects of tannic acid (TA) against Brucella abortus infection. After infection, F-actin polymerization and mitogen-activated protein kinases (MAPKs) (ERK 1/2 and p38α) phosphorylation were reduced in TA-treated cells compared with that in control cells. The mice were infected via an intraperitoneal route and were orally given TA or phosphate-buffered saline for 14 days. Spleen weights of the TA-treated and control mice were not different; however, splenic proliferation of B. abortus was significantly reduced in the TA-treated group. Immune response analysis showed that, compared with the control group, non-infected TA-treated mice displayed increased levels of interferon-γ (IFN-γ), monocyte chemoattractant protein-1 (MCP-1), and interleukin-10 at 3 days post-infection and a further increase in IFN-γ and MCP-1 at 14 days post-infection. In contrast, compared with the control group, infected TA-treated mice displayed elevated levels of IFN-γ at 3 days post-infection, which continued to increase at 14 days post-infection, as was also observed for tumor necrosis factor. Taken together, the results showing TA activation of cytokine production and inhibition of bacterial proliferation in the host highlight a potential use of TA treatment in the control of Brucella infection.
Keywords: Brucella abortus, actins, cytokines, mitogen-activated protein kinase, tannins

© 2018 The Korean Society of Veterinary Science.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.